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CHAPTER 4

WAVES IN A COLD, COLLISIONLESS

PLASMA

In the tenuous plasmas of coronae where fluid turbulence and vortex motions are
frequently inhibited by the magnetic field, waves take their place to carry away the
energy and momentum of local disturbances. Many kinds of waves are possible in
a plasma depending on frequency, species of oscillating particles, restoring force,
boundary conditions, inhomogeneity, propagation angle to the magnetic field, etc.
In this chapter we shall give an overview of the basic wave modes in homogeneous
plasmas ranging from the MHD waves, at periods of the order of minutes under
solar conditions, to the high-frequency electromagnetic waves escaping from the
corona as radio to X-ray emissions. The common physics of waves as collective
phenomena has already been emphasized in Section 3.2 on MHD waves.

What happens in a wave whose frequency exceeds the collision rate? In princi-
ple, each particle or group of particles could oscillate in its own way. The velocity
distribution may oscillate and not remain Maxwellian. In a first approach that
is not kinetic, we simply ignore thermal motions in this chapter and replace the
velocity distributions by é-functions. This is what we mean by the adjective ‘cold’.
The oscillations of the distributions therefore do not play a role here and will be
the topic of the next chapter. As in MHD, the cold plasma is considered as a
fluid, and the individuality of particles is neglected. The equations of particle
and momentum conservation (the moments of Boltzmann's equation) are similar
to MHD, except that there are no temperature effects and the different plasma
species are not locked to each other by collisions.

4.1. Approximations and Assumptions

Can a plasma be both free of collisions (hot) and have negligible thermal mo-
tions (cold)? The adjectives cold, collisionless, non-relativistic, infinite, etc. mean
different simplifications in the fundamental equations. Such simplifications are
important for understanding the physics in plasma phenomena. The approxima-
tions hold as long as the neglected effects are smaller than the phenomenon under
scrutiny. Note that there are simplifications that exclude certain effects altogether.
The sound wave, for example, does not appear under the cold plasma assumptions,
and can only be recovered by allowing for thermal motions. The danger of plasma
physics is to exceed the limits of validity set by these simplifying assumptions. In
practice, one often does not know these limits. To give an example, interplanetary
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Fig. 4.1. Characteristic frequencies in the order typical for the solar corona. The numbers refer
to frequency ranges discussed in the text. we ; is the electron-ion collision frequency (Eq. 2.6.32).

density variations make it questionable to consider the interplanetary medium as
an infinite, homogeneous background plasma even for localized processes.

Characteristic frequencies divide a plasma into ranges where different assump-
tions apply. The parameters of cosmic plasmas vary over many orders of magnitude
(see Table 4.1), and this division is not fixed. Depending on the frequency of a
wave, the plasma species behave differently. The frequency ranges given as an
example in Figure 4.1 for the solar corona have the following properties:

(1) Collisions dominate — MHD waves.

(2) Collisionless plasma, but p* ~ 0 — Chew—Goldberger-Low waves (similar
to MHD, but the pressure can be different in directions parallel and perpen-

dicular to By).

(3) Ions are unmagnetized, meaning that the wave oscillates faster than the ion
gyration time. The orbit of an ion within a wave period can be approximated
by a straight line and is independent of the magnetic field. — Ions and
electrons behave differently and have to be described by two fluids.

(4) Tons are practically immobile. — Only electrons are important (one fluid).

(5) Electrons are unmagnetized.

(6) Electrons are also immobile. — The plasma increasingly comes to resemble

a vacuum.

In every range there is, in principle, a different system of equations suitably de-
scribing linear waves. The waves keep their identity, but gradually change their
character from one range to the next.

COLD PLASMA WAVES 71

Table4.1. Typical parameters of various plasmas and their characteristic frequencies.

Plasma n T B Ve i Q. /27 Vp
~[em™ PK] (G [Hz] [Hz] [Hz]
intergalactic 10—6 10° 10-8 10~12 3.1072 10
interstellar 102 102 10-5 10-3 30 108
interplanetary 10 108 10~ 1075 3-102 3.10*
solar corona 108 108 10 10 3.107 108
ionosphere 108 108 0.1 3.10° 3.10° 107
center of star 102 108 1097 10t 3-10127? 1016
white dwarf 1030 108 10° * 3.101 1012
tokamak 1016 108 10° 106 3-1011 1012

4.2. Cold Plasma Modes
4.2.1. LINEARIZATION

A plasma is said to be cold if processes are investigated that do not depend on
thermal motion or pressure. The behavior of waves in a cold plasma is derived
from the moments of Boltzmann’s equation (Egs. 3.1.16 and 3.1.21) without the
MHD approximation and summation over species. These multi-Aluid equations —
upon neglecting the pressure term (p = 0) and collisions (S* = 0) — contain the
physics of a cold, collisionless plasma in the frequency ranges 2 ~ 6 of Figure 4.1.
For each species o there is an equation for particle and momentum conservation,

on®

-5 TV (V) =0 (4.2.1)
ove a o G loa oo
gt (VO VIV = S (B4 Ve xBT) (4.2.2)

In addition we are using the full set of Maxwell’s equations in their classical form,

16B
B = —_z * .
\% 0 V XE o o= Ea oMo (4.2.3)
47 10E
V- E = 4np* VxB=— - '=E ve
TP X . J+ -5t J: QaNa . (4.2.4)
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The method to extract the linear modes (periodic solutions to. small d1st{)1\1;-
bances of an equilibrium) is analogous to the MHD waves (Sectlf)n 3}21) . e
study the temporal evolution of the variables of the system having the t(‘)rm
A = Ag + A1(x,t), where Ag = const is the value of the.homogeneous, st.a ion-
ary plasma. A; is a small deviation compared to the statlonary_ value, satisfzmog
|41 < |Ao]. We shall furthermore assume that Eq = 0, Jo = 0, a'mbl 2% ;thé
The zero-order terms satisfy Equations (4.2.1) - (4.2.4). When the varlaﬁ €s o d
disturbed plasma are put in, the zero-order terms cancel. Products of rst—(')r. er
variables can be considered of higher order and are neglected. The remaining

system of equations is linear,

?gﬁ Ve Ung +ngV - VE =0 (4.2.5)
1

OV = a __ Qa 1 a Vex B 4.2.6)

at1 + (Vg V)V —E—(El_’—cvl ><B0+c 0 1) (
198, (4.2.7)

VxE=-0

o= gant (4.2.9)
dr . 10E; 4.2.10)

VxBr="—ht o (
3= Y aanfVE +§VE) (4.2.12)

This system of equations is very general and includes a largfe vari‘ety of' waves. I:
also contains the displacement current in Equation (4%.2.10). which will be 1n'1plortan
for high-frequency waves. We shall restrict the (.ilscussmn. to two special cases
revealing the most important wave modes and their properties:

(1) B # 0, Vg =0 for all particle species a.

(2) Bg =0,V§ # 0 with at least two species moving in relation to each other.
This case will be studied in Section 4.6.

us stationary background, the Fourier transformation can be

For a homogeneo suming that all first-order terms

carried out by the simple form for plane waves, as
have the form

A (x,t) = Arexpli(k - x —wt)] . (4.2.13)
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All derivatives then become factors,

— = —iw, V =ik
ot

The dispersion relation can be calculated from Faraday’s law (Eq. 4.2.7) if
the magnetic field, By, is expressed by the electric field. For this purpose we first
have to calculate the electric conductivity and the dielectric tensor, and then use
Ampere’s equation (4.2.10).

4.2.2. OHM’S LAW

Electric conductivity is the relation between electric field and current density.
Thus we search for an equation of the form of Ohm’s law. It follows from the

linearized momentum equation (4.2.6) and the assumptions Bg # 0 and V& = 0
that

e e 1
— WV = :TIL—(El +-V§xBo) . (4.2.14)

Using the gyrofrequency in vector form, 2% := ¢,Bo/(maec) (Eq. 2.1.4), this
transforms into

—iwVer Qe xvVe=Log, (4.2.15)

(o3
This linear, homogeneous system of three equations can easily be inverted. Let us
use a frame of reference in which the z-axis coincides with the direction of Bg. The
gyrofrequency vector, £2%, has a non-vanishing component in the z-direction only.
We shall use the z-component of the gyrofrequency defined by Q2 := q/|q| Q.
The value of (2 is positive or negative depending on the sign of the charge. Then

iw -7 0
o | TEY T
Vi=io | olter wter O [*Br (4.2.16)
0 0 i
Ve=M,+E, . (4.2.17)

Equations (4.2.16) and (4.2.17) define a mobility tensor, M,, describing the effect
of the wave electric field on the mean velocity of particle species a. We immediately
get Ohm’s law and the conductivity tensor &,

J1= qanaV§ =D ganaMo) *Ey =: 6+ E; (4.2.18)

It is remarkable that there is a finite conductivity, even without collisions.
Inspecting Equation (4.2.16) we find, however, that the conductivity relates to
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the wave character of the disturbance, and it becomes infinite in the z—dire(fti.on
for w = 0 in agreement with our assumption of ideal MHD. The C().n'duc.tlvmy
appearing in waves is the result of particle inertia hindering free mobility in the

wave fields.

4.2.3. DIELECTRIC TENSOR

As a next step we calculate a formal dielectric tensor. So fa.r we I.lave consicflered
the plasma as a set of particles in empty space, and the dlel(?CtI'lC properties }(I)f
the background medium were those of a vacuum. The physical reason for the
appearance of dielectric properties is simply that thfe electromagnetic field and the
current of a wave depend on each other. The mobility of the free charges tends to
weaken the electric field and thereby induces a magnetic field. One defines a D
vector in Ampére’s equation (4.2.10) through

1k % B1 = 54—71.]1 — Z—biEl = —EDl . (4219)
C C [

Using Ohm’s law (Eq. 4.2.18) we eliminate J; and put D, := éx E;, where we
have defined the dielectric tensor

. 4r N AT qone 5
p_q M. 3 N XeTapng 4.2.20)
é=1 : =1 ¥ i (
oy 2 . Qe (wa)2
1-—- a 'JT(E)%Z)ETZ —i Za W@ —(Q)7) 0
. 02 (ws)* (wp)? 4.2.21)
= | iiaswi—ten 1T Za =@ o (
4] 0 1- _(w 2)

€0 1€y 0
= ——iel €0 0
0 0 ¢

We have defined the plasma frequencies for each species as well as for the whole

(4.2.22)

plasma by
Arqina
a2 @ (4.2.23)
(wp) . e E]
wf, — Z(wg)2 ) (4.2.24)
o3

The reason for the appearance of the plasma frequency is obv.ious; wp is pro-
portional to the ratio of the electric force to inertia (mass), Whl.Ch also controls
the oscillation investigated in Section 2.5. The dielectric proper‘me_s are '?herefore
usually dominated by the lightest particles — the electrons. The dielectric tensor
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reduces to unity for very high frequencies or effectively infinite inertia and becomes
equal to the value in a vacuum.

4.2.4. DISPERSION RELATION

Let us now Fourier transform the linearized Faraday equation (4.2.7)

ik x Ep = %)—Bl . (4.2.25)

B; can be eliminated using Equation (4.2.19). The result is a system of three
linear, homogeneous equations,

2
(ki -kok — ‘-"ge) «E1 =0 . (4.2.26)

The tensor product o is defined in Appendix A. Equation (4.2.26) only has a
non-trivial solution if the determinant of the system equals zero. We thus require

det[(%ﬂi —(£)kok—g =0 . (4.2.27)
w w
It is a general dispersion relation for waves in a cold, stationary plasma. The
combination ck/w =: N is called the refractive index. It controls the refraction
(bending) of propagation in inhomogeneous media.

There are four basic roots for linear plasma modes: two electromagnetic and
two electrostatic modes. The electromagnetic waves are related to the two po-
larization modes of radiation in a vacuum. The charged particles in a plasma
participate in the wave oscillations and modify the character of the waves. The
electrostatic modes are related to the different oscillation properties of ions and
electrons. We have encountered an electrostatic mode in Section 2.5 as the eigen-
mode of electron oscillations around essentially inert ions. The mode is named
electron plasma wave. The other electrostatic mode, called ion wave, will appear
as lower hybrid wave (Section 4.4.1) and as ion acoustic wave (Section 5.2.6). The
name ‘electrostatic’ expresses the fact that there is no magnetic force involved. In
the more realistic case, however, when an external magnetic field is present and
the wave is not parallel to this field, these waves in general also have magnetic
components.

The four basic wave modes do not exist at all frequencies and at all angles to
the magnetic field. Furthermore, they behave differently at different frequencies
and angles. For this reason, the same mode may carry different names relating
to essential physical properties under different approximations. The name of the
wave generally characterizes the basic physical principle, not the mode. As for the
MHD waves, the physics is best studied in the limiting cases. For an overview we
shall ultimately connect the waves at different angles in Section 4.5 to recover the
four basic modes.
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4.3. Parallel Waves

For a first orientation we have a look at waves that propagate parallel to the
magnetic field. We write k = (0,0,k), and the determinant (4.2.27) is easily

calculated,

e,,[(fii; —e)?—€]=0 . (4.3.1)

Equation (4.3.1) has three solutions: one electrostatic and two electromagnetic.
The parallel electrostatic ion wave does not appear in cold plasma and will be
discussed in Section 5.2.6.

4.3.1. ELECTROSTATIC WAVES

A first solution to Equation (4.3.1) is readily extracted by putting

€ = 0 . (4.3.2)
According to the definition of ¢ in Equation (4.2.22),
w=wp - (4.3.3)

We shall show that we have recovered the plasma eigenmode of Section 2.5, except
that now all plasma species are allowed to oscillate freely. Thus, the plasma
frequency in (4.3.3) is the root mean square over the plasma frequencies of all
species. Nevertheless, we shall refer to these waves as electron plasma waves, since
the oscillation energy of the electrons exceeds that of the ions by the mass ratio
m;/(meZ2) (Exercise 4.1). Equation (4.2.26) can only be satisfied (for By # 0) if
E, is parallel to Bg. The mobility equation (4.2.16) then requires that Vy is also
parallel. In other words, the particles oscillate in the same direction as the wave
vector. Such a wave is called longitudinal.
Furthermore, Ampere’s equation (4.2.19) becomes

ik x By = —%e* E; =0 . (4.3.4)
On the other hand, Equation (4.2.11) requires

ik-By=0 . (4.3.5)

Both can only be satisfied if By = 0. A wave with this property is generally called
electrostatic. This special case of a parallel propagating electron plasma wave,
where no magnetic effects appear — neither from the background plasma nor in
the wave — is named the Langmuir wave after one of the pioneers of plasma physics
in the 1920s.

The dispersion relation (4.3.3) already indicates how different electron plasma
waves are from MHD waves derived in Section 3.2. Only one frequency is possible,
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but the wavelength is arbitrary. The phase velocity, w/k, varies with wavelength;
a wave with this property is called dispersive. The group velocity vanishes as
Bw/Ok = 0. A wave packet thus does not propagate, nor does the wave transport
energy. It corresponds to the plasma eigenmode introduced in Section 2.5. We note
that these extreme properties of electron plasma waves are considerably moderated
when we shall allow temperatures T # 0 in the following chapter.

Electron plasma waves are excellent density diagnostics in astrophysics. Even
allowing for thermal effects, their frequency is closely related to the electron density
in the source region (Eqs. 4.2.23 and 4.3.3). But how can these non-propagating
waves be observed? The conversion of plasma waves into observable electromag-
netic waves is discussed in Section 6.3. Such plasma wave emission is the generally
accepted process for solar type III radio bursts. An alternative way to make elec-
tron plasma waves observable is their investigation by radar, which is practicable
in the Earth’s magnetosphere.

4.3.2. ELECTROMAGNETIC WAVES

Two more solutions of Equation (4.3.1) can be found by putting the term in
brackets equal to zero. First, let

c2k?
2 T Gteai=e . (4.3.6)

The left side of Equation (4.3.6) is the square of the refractive index, and the
equation, combined with the definitions (4.2.22) of ¢y and €, is the dispersion
relation of a further mode supported by a cold, collisionless plasma. To determine
the polarization of this wave, we put the dispersion relation (4.3.6) into Equation
(4.2.26) and get

€1 —i61 0
’L'61 €1 0 * E1 =0 . (437)
0 0 —6”
This requires
By, —iE, =0 (4.3.8)
By, =0 . (4.3.9)

Equation (4.3.9) states that the wave is transverse, meaning that E; is perpendicu-
lar to k. To comprehend Equation (4.3.8) one has to remember that the first-order
variables contain a complex exponential, exp[i(k,z — wt)], but only the real part is
observable. It is straightforward to show that the wave is left circularly polarized.
(Left here means that the E4 vector for an observer at a given location rotates
counterclockwise when looking along the vector Bg.) Note that neither the sense
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of rotation (defined by Bg) nor any other property changes for a wave with neg-
ative k propagating in the negative z-direction. We may in general call the wave
defined by Equation (4.3.6) an L-wave.

It follows immediately from the Faraday equation (4.2.7) that By is perpen-
dicular to both k and E;. The L-mode thus is electromagnetic. It differs from
the well-known electromagnetic wave in a vacuum by its inclusion of a current
(J1 L k). This has important consequences if a wave is near resonance to one of
the characteristic frequencies of the plasma.

The third solution is found in the analogous way,

2.2
E_]Z— =€) — €1 '=€R , (4.3.10)
w
being the dispersion relation of the R-wave. Again one gets the polarization from
Equation (4.2.26). The E;, component vanishes and

Eip +iEy =0 . (4.3.11)
The wave is transverse and right circularly polarized. It is not just the mirror

image of the L-wave, but differs from it by having other resonances. This we are
now going to investigate.

4.3.3. DISPERSION RELATIONS OF THE L AND R WAVES

L-waves and R-waves are the realizations of the two electromagnetic modes for cold
plasma and parallel propagation. They are circularly polarized and can resonate
with gyrating particles. In this section we study the effects of resonances on the
waves from their dispersion relations. For simplicity, we assume only one species
of ions. One derives easily

2

S . 7L) (4.3.12)
QFE)+T)

using the modulus of the gyrofrequencies (€; := [2;] and Q. := |Q¢[). The upper

sign stands for the I-mode, the lower sign for the R-mode. In the following we
study this dispersion relation for waves at different frequencies.

e For w <« wp, 4,2, both L and R waves have

€L =€pte =1
R

k2e2 wg 2
= =1 4.3.13
X ] (4:3.13)
This is the dispersion relation for Alfvén waves (Eq. 3.2.13),
2.2
w? Wca (4.3.14)

T 1+ (ca/o)

with an additional term stemming from the displacement current, being neglected
in MHD. In Section 3.2 we have assumed the form of a linearly polarized Alfvén

COLD PLASMA WAVES 79

wave, which can be done in two independent perpendicular directions. Since L and
R waves have the same dispersion relations, they can be superposed to a linearly
polarized Alfvén wave. At low frequencies, L and R waves are thus identical to
Alfvén waves.

e For w > wp, {2, Q, one finds from the definitions (4.2.22) and (4.3.12)

eL=¢ep=1 . (4.3.15)

The dispersion relation then follows immediately as

w? =kt . (4.3.16)

The equation is identical to the dispersion relation of electromagnetic waves in a
vacuum; so the waves are the same as ordinary radiation.

4.3.4. RESONANCES AT THE GYROFREQUENCIES

It is not surprising that the dispersion relation of the L-wave (Eq. 4.3.12) has a
singularity at ;, the gyrofrequency of the left circling ions. At this frequency the
ions rotate in phase with the wave, feel a constant electric field E;, and quickly
exchange energy with the wave. L-waves below ; are called ion cyclotron waves.
If propagating into a region where it is in resonance, a wave can be reflected or ab-
sorbed, depending on the damping processes. We note that an L-wave propagating
into the negative z-direction is also in resonance with the ions.

The analogous process occurs for R-waves at 2.. R-waves between the electron
and ion gyrofrequencies have peculiar properties deserving special attention. In
the range

QKw<Q Kwp (4.3.17)
Equations (4.3.10) and (4.3.12) can be approximated by

k22 w2
i (4.3.18)

In the form of phase velocity, the dispersion relation (4.3.18) becomes

w ., [w w m; [w w
= - — [ — 1 —_—) = —_— — bt . Y N
R e R (K M % (43.19)

These R-~waves are called whistlers, since their group velocity depends on fre-
quency,

Ow MW w \*? w
’Ug’l‘ —_ ey 2CA (1 — Q—.) —t 21}])’1(1 bl Q_) . (4.3.20)
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When pulses of whistler waves are excited, the high-frequency waves will arrive
first. This property gives the waves their peculiar name. With ordinary long-
wave radio receivers one occasionally hears a whistling sound at a decreasing pitch
originating from whistler waves excited by terrestrial lightning and propagated
through the magnetosphere.

4.3.5. CUTOFFS NEAR wp

Tt is important to discuss carefully the behavior of observable waves near the
plasma frequency. For w > €; one can approximate Equation (4.3.12) by

SRR C V)8
@Q._%Nllimm. (4.3.21)
The right side — being equal to the square of the refractive index A/ — must be
positive for the modes to exist. This condition creates a cutoff in frequency below
which the waves are evanescent (they do not propagate since their refractive index
is purely imaginary). The refractive index equals zero at the cutoff. A propagating
wave that meets a cutoff is usually reflected. For R-waves (minus sign in Eq.
4.3.21) the cutoff is at

[ 1
Wy & V-'wngzﬂg + §Qe . (4.3.22)

For w? > Q2, the cutoff frequency is about wp + %Qe. In the other extreme,
for wgp < 2, the cutoff frequency wy ~ Qe(1 + wp/ 02). It is easily shown that
for R-waves the cutoff is always above max(wy,{le), above the two elementary
frequencies. The cutoff determines the lowest frequency of waves that can escape
from a stellar atmosphere and that can be observed (see Fig. 4.2).

According to Equation (4.3.21) L-waves have a cutoff at w, = (wj + 10212 -
%Qe. However, this is a singularity of strictly parallel propagation and is of no
practical importance. For all other propagation angles there is a resonance as well
as a cutoff at a higher frequency (as will become clear in Section 4.4), namely the
plasma, frequency. Thus in realistic circumstances, L-waves escape for

w > wp - (4.3.23)

The local plasma frequency is therefore the lowest frequency of electromagnetic
radiation that can leave a corona from a given height.

The L and R waves are evanescent between the resonance at €; and (2, and
their cutoffs at w, and wg, respectively. This part of the spectrum is called the
stop region.

Cutoffs and resonances are important for the understanding of electromagnetic
radiation from stars. Broadband emission processes cannot excite waves in the
stop region between resonance and cutoff in the source. Secondly, a propagat-
ing wave may be absorbed. While propagating in an inhomogeneous region, its
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Fig. 4.2. Schematic drawing of whistler wave propagation in a corona. Plasma frequency and
electron gyrofrequency vs. radial distance r from the center of the star. No electromagnetic
waves can propagate in the ‘stop’ region.

frequency remains constant. It may reach a stop region if the local characteris-
tic frequencies decrease along the path. Whistler waves, as an example, cannot
leave a corona, since their frequency at some higher altitude will exceed the local
electron gyrofrequency. In Figure 4.2 a whistler of frequency w, originates at 7.
It propagates only until w, is about the local gyrofrequency 2., where it is ab-
sorbed and/or reflected. Waves observable at w, from the outside must originate
at r > r;. In extreme cases, tunneling through the stop region is possible. It has
been observed in regions with a steep density gradient in the Earth’s ionosphere.

4.4. Perpendicular Propagation

4.4.1. ELECTROSTATIC WAVES
The electrostatic modes can easily be extracted from Equation (4.2.26) by scalar
multiplication by k from the left, and the result is

2

w n

Electrostatic waves are longitudinal, i.e. E; || k, as required by the Faraday
eguatlon (4.2.25) and B; = 0. Equation (4.4.1) leads immediately to the general
dispersion relation for longitudinal, electrostatic waves,

k-(6xk)=0 . (4.4.2)
It includes the parallel case (Eq. 4.3.2). In the perpendicular case, k = (k,0,0),
Equation (4.4.2) gives

=0 . (4.4.3)

The definition of €y, Equation (4.2.22), then yields for w 2 wp > Q.
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winwl+ Qo (4.4.4)

This mode is called an upper hybrid wave, since it is a combination of space
charge oscillations with the gyration of electrons. Its frequency, given by Equation
(4.4.4), is the upper hybrid frequency. The wave is the analog of the parallel
electron plasma waves and may be a cause of radio emission, as will be discussed
in Chapters 8 — 10. In the general case with angle 8 between k and By, Equation

(4.4.4) is replaced by
w? ~wl+ 02sin%6 (4.4.5)

(Exercise 4.2). It also includes the parallel case () = 0), the electron plasma wave

of the previous section.
The conditions ; < w < . lead to a completely different perpendicular

wave. We find

(we)2 QeQi
Ao

€

)=0 , (4.4.6)

o~ 1+

w?

and by simple manipulation

2 (wp)?
w ~ 1+ (w;/Qe)z . (447)
This electrostatic wave is known as the lower hybrid wave. Its frequency is called
lower hybrid frequency, amounting to w? ~ Q;0, for wy > Q..

For wy, < Q. Equation (4.4.7) yields a wave frequency of about w;. Why does
the plasma frequency of the ions appear? This is an interesting piece of wave
physics. The wave frequency is small compared to the gyrofrequency of electrons;
thus they circle many times per wave period. Electrons therefore remain closely
attached to their magnetic field line. The ions, however, need much longer to
gyrate than a wave period and move a practically linear orbit during this time. As
a result, they appear to be not bound to the magnetic field and can freely move
within a wave period. The lower hybrid wave is an oscillation of space charge of
the ions. This is in contrast to electron plasma waves, where electrons oscillate
around the inert ions (Section 4.3.1). Electrons and ions have changed their roles!
For example, lower hybrid waves can be excited by perpendicular ion currents
(Chapter 9) and can accelerate electrons parallel to the magnetic field. They are
5 manifestation of the second electrostatic mode, the ion plasma waves.

4.4.2. ELECTROMAGNETIC WAVES

One may expect that the general dispersion relation, Equation (4.2.27), of waves
in a cold, collisionless plasma has the same number of solutions in the cases of
parallel and perpendicular propagation. Thus we search for the electromagnetic
modes putting k = (k,0,0) into Equation (4.2.27) and find two more modes:
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(1) Ordinary mode

w? = k2% + wf, (4.4.8)

The frequency of these waves always exceeds w,, where they have a cutoff. They
are linearly polarized with E; || By and B; L By. As E; 1 k, they are elec-
tromagnetic. Since the oscillation of the particles in transverse waves is always
parallel to E;, and in this case also to By, the magnetic field does not influence the
wave. The_refore By does not appear in Equation (4.4.8). The wave and particles
behave as in a non-magnetic plasma. This characteristic property has led to the
name ordinary wave or o-mode. For large k-vectors it is mathematically the same
branch of solution as the L-mode for k || Bg. A complication arises at small k
which will be discussed in Section 4.5. ,

(2) Extraordinary mode

There is another mode called extraordinary or x-mode. The dispersion relation
for w > Q; is

ke w2(1 — wl/w?)

W W (W + 02)

(4.4.9)

The wave is again electromagnetic and linearly polarized, but has E; L Bg. As
V1 || Eq, the particle oscillations (mostly electrons are involved) are perpendicular
Fo the magnetic field. The higher the electron gyrofrequency, the greater the
influence of the magnetic field. The wave differs from the non-magnetic mode
thus it is named extraordinary. As one may expect, this oscillation corresponds’,
tottlge Iti—mode at parallel direction. The refractive index vanishes and causes a
cutoff a

1 1
wo = (w24 20 + 20 (4.4.10)

The resonance (singularity of Eq. 4.4.9) is at the upper hybrid frequency being
however, always below the cutoff frequency. ’

We note that for both electromagnetic modes the frequencies of wave-particle
resonance change with propagation angle between k and Bgy. The cutoff frequencies
are the same for parallel and perpendicular propagation, since the lowest frequency
is at £ — 0 in both modes. In the next section we shall connect the two regimes
through intermediate angles.

4.5. Oblique Propagation and Overview

’.I‘he ‘dispersion relations of the high-frequency waves are shown without derivation
in Figure 4.3 as surfaces in (w, k,, k) )-space. These waves, also known as mag-
netoionic modes, are the modes supported by the electron gas (Appleton—Hartree
approximation). Waves due to the motion of ions (such as the lower hybrid mode)
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have lower frequency and have been omitted. Four surfaces are clearly visible in
Figure 4.3. They are called branches. The modes we have previously discussed
correspond to cuts along the parallel or perpendicular k-axis.

For later use, thermal effects (assuming 7=25 000 K) are included. They limit
the k-vector to values smaller than the inverse Debye length (or kRe < wp /e,
Chapter 5). Figure 4.3 presents the case of wp = 3.22 (2.

In the front edge of Figure 4.3 (k, = ki = 0), the three high frequency
modes have their cutoffs at about w, = %Qe, and wp, respectively, as expected
from wf, > Q2. At large k, the correspondence between parallel and perpendicu-
lar modes is simple: The parallel R and L modes connect to the x and o modes,
respectively, at perpendicular propagation angle. The modes remain transverse,
changing gradually from circular polarization into elliptic and finally linear polar-
ization. For intermediate k, (1072 < k; R < 1) the Langmuir mode changes into
the perpendicular, electrostatic upper hybrid wave. It has cyclotron harmonics at
even larger k, called Bernstein waves, a kinetic plasma mode to be discussed in
Chapter 8 (for further information see Melrose, 1980). For clarity, the Bernstein
modes in the second and fourth bands above € are indicated in Figure 4.3 only
for perpendicular propagation.

At small k, only the R-mode and the whistler branch transform simply. Note
the remarkable property of the parallel electron plasma oscillations (Langmuir
waves) connecting to the perpendicular o-mode at small k through a region of
predominantly electrostatic plasma waves! The L-mode at small k, on the other
hand, connects to a predominantly electromagnetic wave (called z-mode), becom-
ing gradually electrostatic as k; increases. The transverse character of the z-mode
is a thermal effect. For this reason the wave has not appeared in our analysis of
cold plasma modes. It exists in the range w; < w < Wyp DeAr perpendicular
direction.

Only o(L) and x(R) mode waves can escape from an atmosphere. The general
dispersion relation of these waves is

2 2,2 x

(N:) = =1l 20 =X)L VA1 - X) 2+ YA (4.5.1)
where

X = (wp/w)? (4.5.2)

Y = Q./w, Yr:=Ysind, Yg:=Ycosf . (4.5.3)

The modes discussed so far in this chapter are referred to as normal. If a plasma
does not comply with our assumptions (being, for example, inhomogeneous or
moving), new modes can appear. One such case will be discussed in the following

section.
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Fig. 4.8. Dispersion surfaces (branches) of high-frequency, collisioniess modes in a homogeneous,
dense plasma. Regions of strong damping are omitted (after André, 1985).

4.6. Beam Mode

Let us now consider a moving particle species in a plasma that is again cold and
collisionless. Moving particle species or beams are ubiquitous in the universe. It
is the second case of Section 4.2 with Bg = 0 and V§ # 0. We simplify to motions
only in the z-direction and consider longitudinal waves. Thus E; | k || V§.
Substituting into Equations (4.2.5) ~ (4.2.9) yields

—iwn§ + Vi¥ikn$ + ngikV® =0 (4.6.1)

. e a; o o 1 a
— WV + VSV = —T%—(E1 +=V§ xBy) (4.6.2)
ikEy =473 gan§ . (4.6.3)

We restrict ourselves to electrostatic waves assuming B; = 0. The equation of mo-
mentum conservation, (4.6.2), yields V{ in relation to E;, and from the continuity
Equation (4.6.1) one extracts nf. Equation (4.6.3) can be rewritten as

, _ ikgang E,
ikEy =41y e @ RVEE (4.6.4)

(wg)?
1_ ; (w _‘"Wo.a_)_Q -0 . (4.6.5)
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The dispersion relation (4.6.5) corresponds to the electron plasma wave (Eq. 4.3.3)
if one puts V§ = 0. The Doppler shift, kV§, however produces an oscillation at
a frequency lower than wy. The waves are referred to as the beam mode. They
have an important property that we shall illustrate in the following example. .

Let us assume that the electrons are in motion, and the ions at rest (Vg =
0,V§ # 0). Equation (4.6.5) becomes

i e\2
- (a:fz)z . (_wz)voey . H(w k) (4.6.6)

k1>k2

H(w.k)
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Fig. 4.4. The function H(w, k) defined in Equation (4.6.6) vs. w for two different values of k.

The function H(w, k) is shown in Figure 4.4 for two particular waves with different
wave vectors. The solution of Equation (4.6.6) are the points of intersection of
H(w, k) with the horizontal line at H = 1. A critical wave vector, k., exists below
which there are only two real solutions. The two others are complex conjugated,

Wz = Wy —Z’Yk ) (467)

Wy = wWyp+ Yk (4.6.8)

The solution (4.6.7) is a damped oscillation and is irrelevant. Equation (4.6.8) is
of great interest, since it describes a wave with exponentially growing amplitude.
Since there is always some small disturbance at the thermal level, this means that
the plasma is not stable. The kinetic energy of the moving particles is trans-
formed into wave energy at an increasing rate. Wave amplitude and growth form
a feedback cycle; it is an exponential instability. Plasma physics is rich in such
phenomena. This particular example is called the two-stream instability. The
growth of the waves may be extremely fast (Exercise 4.3).

r

COLD PLASMA WAVES 87

If the growth rate, v, of Equation (4.6.8) exceeds the damping rate due to
collisions in the background plasma, the neglect of collisions is justified. If not,
the waves do not grow. The relevant rate is the thermal collision time between
the oscillating electrons (test particles) and ions (field particles). It has been
evaluated in Equation (2.6.32). The collisional interactions exert a frictional force
on the particle motion. The details depend on the excited wave mode and the
corresponding fraction of wave energy residing in kinetic motion. As an example,
this ratio can be calculated (starting at the equation of motion 4.6.2) to be one
half for electron plasma waves at w = wp. From the work of Comisar (1963), we
quote the collisional damping rate of electron plasma waves,

87n. (InA
coll = — vy s 4.6.9
Yeoll Tf’/2 ( 20 ) ( )

close to the thermal electron-ion collision rate found in Equation (2.6.32). Solar
abundances and fully ionized ions have been used to transform n; into n..

The two-stream instability is in fact an extreme case that rarely (if ever) oc-
curs in astrophysical plasmas, since it assumes monoenergetic particles. In the
following chapter we shall study the instability in the presence of a finite spread
of the velocity distribution. This will take into account that only a fraction of the
particles with particular velocities may participate. Such an approach is termed
kinetic as opposed to the hydrodynamic (or ‘reactive’) instability considered here.
As a rule, the instability threshold and growth rate of collisionless waves must be
evaluated from a kinetic investigation. Nevertheless, a hydromagnetic treatment,
as in this section, may quickly indicate the type of waves to be expected.

Exercises

4.1: Prove that in electron plasma waves the oscillation energy of electrons exceeds
that of the ions by the mass ratio m;/(Z2?m.) (assuming one ion species only).

4.2: Derive the dispersion relation of electron plasma waves at arbitrary angle o
between k and the magnetic field for w > Q. (generalization of Eq. 4.4.4).

4.3: Evaluate the dispersion relation of electrostatic waves in cold plasma con-
sisting of two electron beams at velocities +v and —v in opposite directions
(neglect ions). At which wave number does the instability grow fastest? Show
that the highest growth rate is w,/2%/2.
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