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The first term on the right of Eq. (4.33) is sometimes called the spinning contri-
bution (Longcope et al., 2007) since it quantifies the injection of helicity due to the
spinning of each patch. A patch of either sign spinning in a counterclockwise sense
(w; > 0) will inject negative helicity. This is natural since this sense of spinning
would create a left-handed twist (Tw < 0) in a flux tube anchored to it. One com-
plete rotation, w; At = 27, will change the helicity by AHr = —CD,.Z. There have
been many observations (Brown et al., 2003, for example) of sunspots spinning at
rates as high as 3 degrees per hour (w; ~ 2 X 1073 rad/s); this motion adds helicity
to the active region corona above it.

The second term on the right of Eq. (4.33), the braiding helicity flux, quantifies
the helicity change occurring as patches move around one another. An opposing
pair moving around one another in a clockwise sense (d6;;/dt > 0) will inject
positive helicity. If each has equal flux and spins at the same rate and sense at
which they rotate then their spinning and braiding contributions will cancel. The
cancellation makes sense, because a flux tube connecting the patches would be
subject to nothing more than rigid rotation. That does not change the internal
geometry of the field and thus should not change the helicity. Therefore, in order
to inject helicity, the two patches must spin and rotate differently. The full braiding
term in Eq. (4.33) actually includes a much wider range of contributions, including
contributions from the relative motion of like-signed sources. In the end it does,

however, quantify the helicity change arising from the restricted range of motions

considered.
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5.1 Preamble

The widespread interest in reconnection results from the fact that it is a fundamen-
tal process that occurs in magnetized plasmas whenever the connectivity of the
field lines changes in time. Reconnection is most commonly associated with geo-
magnetic and solar activity because such changes in field line connectivity can be
directly observed, but there are many other, less well-known, applications ranging
from meteorites and comet tails to accretion disks and galactic jets. Reconn;ction
is also found in laboratory devices that have been built to study the feasibilit

of controlled thermonuclear reactors, as well as in several experiments that hav)e/
been specifically designed to study reconnection as a basic plasma process. Those
aspects of magnetic reconnection that depend primarily on the topology. of the
magnetic field tend to be of universal application. However, aspects that depend on
the detailed characteristics of the plasma itself, such as its temperature and densit

tend to be restricted to the specific application where such characteristics occu)r/’
Thus, there is no universal theory that can be applied to all situations. .

5.2 Basic concepts

The term magnetic reconnection was introduced by Dungey (1953a), who was
lnter.ested in the problem of particle acceleration in the Earth’s magn’etosphere
Earl'ler studies (Giovanelli, 1946; Hoyle, 1949) had considered the acceleration 01‘T
particles at magnetic neutral points in the presence of an electric field produced b

plasma convection, but these studies did not include the magnetic field produceZ
by the current associated with the motion of the particle. Using the framework of
ilon-ldeal magnetohy(.irodynamics (MHD), Dungey argued that this current would
ake the form of a thin sheet in which the diffusion of the magnetic field would
necessarily dominate. Furthermore, this diffusion would cause field lines passing
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Fig. 5.1. The magnetic field line topology in the reconnection model of flare loops
at two different times. The shaded area is the X-ray loop system, while the numbers
at the base mark the footpoints of individual field lines. The outermost edges of

the flare ribbons are located at Xg and —XRg.

through the current sheet to change their connectivity to one another. This process
was described as field line “disconnection” followed by “reconnection”.

5.2.1 Definitions

Magnetic reconnection can be defined quite generally as a change in the connectiv-
ity of field lines in time. This definition is based on the supposition that field lines
can be uniquely identified and tracked in time. In an ideal plasma, i.e. one which
satisfies the frozen-flux condition (see Section 3.2.3, the motion of an individual
field line can be defined as being identical to the plasma motion in the direction
perpendicular to the magnetic field. However, reconnection necessarily requires
field lines to violate the frozen-flux condition so that they can change their con-
nectivity, and when this happens it is not always possible to define the velocity or
connectivity of a field line uniquely (Priest et al., 2003). A tokomak plasma is an
example of where problems can occur, although even here one can still talk about
reconnection provided that there are well-organized flux surfaces. Generally recon-
nection is well defined in three dimensions if all the field lines map to surfaces, ot
localized regions, where the frozen-flux condition holds, because the connectivity

of the field lines at any point in time can be uniquely established. Although it

is possible to define a generalized reconnection process that does not require an

X-type field line topology (see Section 5.3 below), all known applications to date

do involve such a topology.

Before considering the full complications of reconnection in three dimensions,

let us start by considering reconnection in two dimensions. Figure 5.1 shows a sim-

ple configuration derived from the standard two-dimensional model of a flare-loop
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system. The magnetic field is shown at two different times. The panel on the left
shows a time after the flare has occurred when the field is starting to relax. The
panel on the right shows a later time. In each panel the horizontal line at the bottom
corresponds to the solar surface. In the model it is assumed that the surface can
be represented by an infinitely conducting and stationary plate. The feet of all the
field lines are anchored (i.e. frozen) to this plate, so that a field line mapping to
a given point on the surface maintains its identity for all times. As the field lines
relax, they move toward the X-line in matched pairs and undergo reconnection.
This reconnection process causes the region of closed field lines to grow with time.
Newly closed field lines have a cusp shape while field lines lower down have a
rounded shape, and the newly closed field lines pull away from the X-line as it
moves upwards. This downward motion is usually referred to as “shrinkage” in the
solar context, while in the Earth’s geomagnetic tail it is referred to as “dipolariza-
tion”. In the solar model the outermost edge of the flare-loop system lies along the
field lines connecting the surface to the X-line. These lines constitute a separatrix
as defined in the previous chapter, and in the model the footpoints of the separatrix
correspond to the outer edge of the flare ribbons.

The field lines that have not yet reconnected can be described as “open” field
lines, meaning that they extend upwards to infinity or to at least a very large
distance. The field lines forming the loops below the X-line are said to be closed,
meaning that they have a finite length and have both feet attached to the surface. In
Fig. 5.1 the rate of reconnection is just the rate at which magnetic flux is transferred
from the open region to the closed region. Quantitatively, we can express the rate
of change of this flux as

yo(t)

b= —
Bdto

d Xgr(r)
B,(0, y)dy = —f By (x, 0)dx (5.1)
dr 0 .
where yj is the location of the X-line on the y-axis. The time rate of change of this
flux can be related to the electric field using Faraday’s law (Eq. 10.9). The final
result can be expressed as
ddp
el Ey — E(XR, 0) (5.2)
where Ej is the electric field at the X-line and E(Xg, 0) is the convective electric
field v x B at the surface, at the footpoint of the field line that maps to the X-line
(tl.1e separatrix). For solar flares the electric field, E(Xg, 0), is negligible compared
with the electric field at the X-line, so the rate of reconnection is related very simply
to the apparent motion of the footpoint of the separatrix:

Eo = B,(Xo, 0) X. (5.3)

-,
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The electric field Ey at the X-line prescribes the rate at which magnetic flux is
transferred from the open to the closed region. Since the flux crossing the y-axis
below the X-line is the same as the flux between x = 0 and the separatrix footpoint
at X, the electric field can be expressed simply as the vector product of the normal
magnetic field at the separatrix footpoint and the apparent velocity of the footpoint
across the surface.

For reconnection in the Earth’s magnetotail, E(XRg, 0) is not negligible and its
value must be measured to determine the reconnection rate. Such measurements
can be made from the ground, using radar signals reflected off the ionosphere to
determine the convective flow and the corresponding convective electric field (see

Blanchard et al., 1996).

5.2.2 MHD theory versus kinetic theory

Reconnection can occur in a broad range of environments. Some, such as the
convection zone in the outer layer of the solar interior, are completely dominated
by binary particle collisions. However, in many cases of interest the plasma is
nearly collisionless, i.e. the mean free path for binary collisions between particles
is much greater than the characteristic scale length of the system. The Earth’s
magnetosphere is a classic example of such a collisionless system. Because MHD
does not explicitly treat individual particle motions, one may jump to the false
conclusion that it is of little use in collisionless plasmas. In reality, MHD and its
two-fluid variants usually describe the global behavior of collisionless plasmas very
well. For example, beyond ten solar radii the solar wind is a completely collisionless
plasma, yet MHD models describe its global velocity, temperature, and density
quite well, including such time-dependent aspects as shock disturbances, stream
interactions, and turbulence.

Thus ideal MHD, and even non-ideal MHD, can successfully describe the aver-
age bulk properties of collisionless plasmas. Ideal (dissipationless) MHD embodies
conservation principles, such as mass, momentum, and energy conservation, which
are universal for both collisional and collisionless systems (Parker, 1996). Resistive
MHD, which assumes that dissipation is a local property of the plasma, can be valid
if wave—particle or wave-wave interaction prevent long-range interactions in the
plasma.

Despite the past successes of MHD in explaining the dynamics of collisionless
plasmas, however, there is good reason to be cautious when applying it to recon-
nection. By definition, reconnection cannot occur in ideal MHD because it depends
on the diffusion of field lines through the plasma, often in small-scale structures
such as current sheets. In this situation Kinetic theory is essential for calculating

the effective resistivity.
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To determine a realistic resistivity for a collisionless plasma requires consider-
ation of the generalized Ohm’s law. For a fully ionized plasma it can be written
as

me [ 9 j
E=-vxB+3 +—Z|:—']+V.(vj+jv)]_']_>£_vl’e’ (5.4)
ne ne

o ot ne

where vj and jv are dyadic tensors and p. is the electron stress tensor (Rossi
and Olbert, 1970). The first term on the right-hand side of this equation is the
convective electric field, while the second term is the field associated with Ohmic
dissipation caused by electron—ion collisions. The conductivity o is the inverse of
the electrical resistivity n.. The next three terms describe the effects of electron
inertia and the next to the last term expresses the Hall effect. Ion inertia can be
considered negligible because the large mass of the ions means that they do not
contribute significantly to a change in the current density. Finally, the last term
includes the electron gyroviscosity, which is considered by many to be important
at a magnetic null (Strauss, 1986; Dungey, 1994). For a partially ionized plasma,
collisions between charged particles and neutrals lead to additional terms associated
with ambipolar diffusion.

Although all the terms on the right-hand side of the generalized Ohm’s law
(5.4), other than the first, allow field lines to slip through the plasma, they do not all
produce dissipation. For example, the inertial terms do not cause the entropy of the
plasma to increase. Thus, even though one may speak of inertial effects as creating
an effective resistivity, this resistivity does not necessarily lead to dissipation.

Which terms are important in a particular situation depends not only upon
the plasma parameters but also upon the length and time scales for variations of
these parameters (Elliott, 1993; Sturrock, 1994). For magnetic reconnection, we
normally want to know which non-ideal terms are likely to be significant within the
current sheet where the frozen-flux condition is violated. Since each non-ideal (i.e.
diffusion) term in the generalized Ohm’s law contains either a spatial or temporal
gradient, we can estimate the significance of any particular term by computing the
gradient scale length L, required to make the term as large as the value of the
convective electric field v x B outside the diffusion region.

Consider, for example, the three inertial terms [3j/8¢ + V-(vj + jv)] on the
right-hand side of the generalized Ohm’s law. If we assume that V ~ 1/L,, |j| ~
Bo/(uLo), and 8/8t ~ V, /Ly, say, where Ly is a typical length scale and Vj a
typical velocity, then these three terms will be of the same order as the convective
electric field if
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In other words, in order for the inertial terms to be important in a current sheet, its
thickness Linenia sShould be given by

me€p\ 1/2
Linertia ~ C( 620) R Ae, (5.5)
ne
where
1/2
Jo = e ( i ) =530 x 1052~ 1/2 (5.6)
Wpe nelu

is the electron inertial length or skin depth, ¢ = (eop)!/? is the speed of light, and
wpe = [(€7ne)/ (€ome)]"/? is the electron plasma frequency.
Similarly, for the Hall term j x B/(ne),

2
By~ Vo By
neplLg
or
Lo e S FMec0 e (5.7)
Hall &~ M Py My
where
- 172 N\ 1)2
2 “m"> =227 x 108 (ﬁ) (5.8)
Wpi nelp n

is the ion inertial length or skin-depth. The Alfvén Mach number equals M =
Vo/ Va = VoBo(uiimpn)~V/2, with ji =T/m, the mean atomic weight, wp =
[(g?n;)/(€om;)]'/? the ion plasma frequency, and V’? the Alfvén speed.

For the electron stress term Vp./(ne) we can write

nkBT

~ Vo B
neLg 00
if we assume that |pe| ~ nkpT, and T, = T; &~ T. Solving for L leads to
172
leress ~ —ATRgi 3 (59)
where
2u> _onT
=nkgT | —= ) =347 x 1077 — (5.10)
B = nks ( = !
and
N2 T.i)/2
Ry = ETmo) = g 4y g7 T (5.11)
£ eB() Bo

are the plasma B-parameter and the ion gyroradius, respectively.

T
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Finally, for the collision term j/o,

By
uo Ly

~ Mva By,

where the product (o )~! is also the magnetic diffusivity n. Using Spitzer’s formula
for the collisional resistivity 7. of a plasma (see Eq. 3.19) we obtain

1 _ (kBmeTe)l/2

= 5.12
=5 ne?mp CRYY
where
(kBTeGO)2 T2
Amfp = 320)Y? 2220 — 1,07 x 100 —— 513
P (27) net In A % nin A ( )

is the mean free path for electron—ion collisions (Schmidt, 1966). Combining these
expressions with those for the electron and ion inertial lengths we obtain
~ B2 ke

Lcolhslon M }\mfp . (5-14)
Note that the length scale L qision Of the spatial variations required to achieve
significant field-line diffusion is inversely proportional to the mean free path Amfp-
As Angp increases, the diffusion caused by collisions becomes less effective, and
increasingly sharper gradients are required to maintain the size of the dissipation
term j/o.

Tables 5.1 and 5.2 list various plasma parameters along with the characteristic
scale lengths for four different regions where reconnection is thought to occur. The
parameter L. is the global (external) scale size of the region, and the fundamental
quantities from which the other parameters are derived are the density n, temper-
ature T, and magnetic field B. For convenience, we assume that the Alfvén Mach
number M, is unity and that the electron and ion temperatures are roughly equal.
The most extreme plasma environments listed in Table 5.1 occur in the magneto-
sphere, which is completely collisionless, and in the solar interior, which is highly
collisional.

In addition to the parameters discussed above, Table 5.1 also lists the value of

the Debye length
kaT. 1/2 T, 1/2
Jip = (GO ) e) = 69.0 (—) . (5.15)
n

The number of particles within a Debye sphere (i.e. 47rnkf) /3) must be larger than
unity in order for the generalized Ohm’s law to hold. Otherwise, the collective
behavior which characterizes a plasma breaks down. The number of particles in a

— e
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Table 5.1. Comparison of plasma parameters l'{’l dlﬁ‘ere.nt . Debye Sph;:lre fi’r th? eng’lr(ir;menlfs Sl;lownlm .Tabl.e 5.1 ;an[%es fr(;n}l] 10™ for Fhe
environments (in MKS units, i.e. length scalesinm,nimm -, T in magnetosphere to qn y abou O}JF or the so ar. Interior at the asej 0 t e convection
’ . folds inVm~') zone. Also shown in the table is the Lundquist number L, which is the same as
K, Bin tw____ I = the magnetic Reynolds number R,, when the flow and Alfvén speeds are the same.
- Laboratory Terrestrial - S:))rlg;a" isn(iglox" For a collisional plasma, the Lundquist number based on L. can be expressed as
. a
Parameter experiments®  magnetospnere 8 = Lo Lova _ L.T2*B, 207 % 108 (5.16)
3 o o mw = = G20 X1 |
'} ]185 107 109 10? Here 7 is the magnetic diffusivity, which is defined as 1/(uo) = ne/u, where o
B 10~ 10-8 10:2 10_10 is the conductivity and 7, is the electrical resistivity. In the expression on the far
o 10-6 10° 10_} 11(())_4 right, n has been replaced by Spitzer’s formula for the electrical resistivity of a
R.i 107* 102 181 10-6 collisional plasma (Priest and Forbes, 2000).
- 1072 ;2 19 3 The characteristic scale lengths in Table 5.1 provide an indication of which terms
InA } (1)_2 106 10* 10-? in the generalized Ohm’s law are likely to be important for the reconnection of
2"‘“’ 1072 107 101—: 1OTo current sheets. As with MHD shocks and turbulence, the large-scale dynamics of
L, (~ Ru) 103 105‘H 118_2 i(())” the flow causes the current sheet to thin until it reaches a length scale where field
Ep 10° 107> 10 10* line diffusion is effective. Thus, in principle, the term with the largest characteristic
Ea(=vaB) 102 ig_; 1073 1072 length scale in Table 5.2 is the one that will be most important. Since the Hall term
Esp (= Ea/v/Rne) 10 has the largest length in every environment except the solar interior, one might
« MRX at Princeton Plasma Physics Laboratory. conclude that it is generally the most important. However, this conclusion does
b Plasma sheet. not take into consideration the fact that the Hall term tends to zero in the region
¢ Above a solar active region. of a magnetic null point or sheet. The Hall term on its own does not contribute

d Base of the solar convection zone. directly to reconnection, since it freezes the magnetic field to the electron flow. To

know whether a particular term is really as important as is suggested by its relative
Table 5.2. Diffusion lengths (in meters ) from the generalized length scale requires a complete analysis of the kinetic dynamics, which is a rather
Ohm’s ia.w formidable task. An excessively small length scale, however, does indicate that any

e —

R — — process associated with that term is unlikely to be important. Therefore, on this

Characteristic Laboratory Terrestrial \ Solar . 'Sn(ileirio d basis we can conclude that collisional diffusion is not important in the terrestrial
length experiments'  magnetosphere”  corond’ | magnetosphere or the solar corona and that the electron inertial terms and the Hall
) 10-* 10% 107! 10:2 term are not important in the solar interior.

L:::l(a)\;)e 102 100 10'_3 i(())—z Although the collision length scale Leopision i equally small in both the mag-
Lo 103 ]05_ , 11(())_7 10-? netosphere and the corona, the general importance of the collisions in these two
Leopiision 10~* 10 regions is quite different. In the magnetosphere the collision mean free path A is
__-—-——-——P-l——;h—;lc_s Laboratory. nine orders of magnitude larger than the global scale size L, but in the corona it is
61‘7 l;/%RX :tsﬁgentcemn e four orders of magnitude smaller than the global scale. Thus, we can be confident
¢ A g(s)r\f‘e . solaf active region. that collisional transport theory applies to large-scale structures in the corona even
¢ Base of the solar convection zone. though it is not applicable within thin current sheets or dissipation layers. By con-

trast, in the magnetosphere collisions are so few that collisional transport theory
does not apply at any scale.

Another important issue concerning the applicability of collisional theory is the
strength of the electric field, in a frame moving with the plasma. If this field exceeds

—b
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the Dreicer electric field, defined by
nin A

eln A SInAn
Ep = _ a3 gp x 1077 , 5.17
D= 4rerl  4megksTe T. Gy

runaway acceleration of electrons will occur. The most likely location for the
production of runaway electrons in a reconnection process is in a thin current sheet
that forms at the null point. This field could be as large as the convective electric

field based on the Alfvén speed, that is
2

— = 6__ "0
Ex = UAB() =2.18 x 10 (ﬂ,n)l/z’

or as low as the Sweet—Parker electric field

Ea
Ese = 217>
Ryf

where Ry is the magnetic Reynolds number based on the inflow Alfvén speed

(i.e. the inflow Lundquist number). As shown in Table 5.1, the Dreicer field in the
magnetosphere is much smaller than Ea or Esp, 50 runaway electrons will always

reconnection there. However, in the solar interior the Dreicer

be generated by
field is so large that the runaway acceleration of electrons never occurs. In the

intermediate regimes of the laboratory and the solar corona the Dreicer field lies
between Ea and Esp, SO perhaps runaway electrons are only produced when very
fast reconnection occurs. |
Even in completely collisionless environments such as the Earth’s magneto-
sphere, it is still sometimes possible to €xpress the relation between electric field
and current density in terms of an anomalous resistivity. For example, Lyons and
Speiser (1985) showed that the electron inertial terms in the generalized Ohm's Il

law lead to an anomalous resistivity
1 B, \
or  2ne’
where B, is the field normal to the current sheet. This resistivity is derived solely
from a consideration of the particle orbits, and in the magnetotail current sheet it
may be larger than any anomalous resistivity due to wave—particle interactions., A

typical example of the latter is the anomalous resistivity due to ion acoustic waves
(Priest, 1982; Benz, 1993).

5.3 Reconnection in two dimensions

In this section we outline basic two-dimensional approaches to magnetic recot

nection, using on resistive MHD theory. More detailed information can be found I

™
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5.3.1 Steady-state models

ﬁ ;:;v) Zezrls) aier g;ngey’s introduction of the concept of reconnection, Sweet
58) and Parker (1957) developed the first itati ’
| : quantitative model. In ord
the analysis as analyticall i e
y tractable as possible, they fi
of two-dimensional steady- ion in a el Than ey
y-state reconnection in an incom ib
assumed that reconnection occurs in a st the oty
. : ‘ 1 a current sheet whose length i
iy . Irs in gthis set by the global
k! theLSOIe[]:; Ifu.ld. as shown in F1g. 5.2. Under these conditions they deterfnined
peed of the plasma flowing into the current sheet is approximately
Ve = vaeLy '/ (5.18)
where L, = i i
e gelObua ] SculoLlevAe / n is the Lundquist number and 7 is the magnetic diffusivity
y Someztli ::1 ;nfthi;s LF, an;i Vae = Be//ILope is the Alfvén speed in the inﬂov&;
: referred to as the magnetic R

- : 7 512 gnetic Reynolds number, alth
t.hazrt ;erzllfs l}ormally used for a similar number based on a typical flow spe::)cli1 %:t;lhe
.and dozs no\;e(;l speed. The outflow speed of the plasma from the current sheet is Ver
i bepend on the value of L,. The reconnection rate in two dimensio:Z
B ty the electric ﬁeld at the reconnection site. This electric field i;
B e ; fo the plane of Flg.. 5.2 and prescribes the rate at which magnetic flux

rom one topological domain to another. In two-dimensional (2D)

Seady- i i
y-state models this electric field is uniform in space. Therefore the Alfvén

MaCh numb =
er, M ovi i \
Ae Ue/UAe, pr ides a quantltati e measure of the reconnection
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Fig. 5.3. Petschek’s field configuration. Here the length L of the Sweet—Parker
current sheet is much shorter than the global scale length Le, and the magnetic
field in the inflow is non-uniform. Two pairs of standing slow-mode shocks extend
outwards from the central current sheet. Petschek’s model assumes that the current
density in the inflow region is zero and that there are no external sources of field

at large distance.

rate relative to the characteristic electric field vae Be. In terms of this number, the
Sweet—Parker reconnection rate is just Ma. = L,V 3

In astrophysical and space plasmas L, is very large (L, > 10°), so Sweet—Parker
reconnection is usually too slow to account for phenomena such as geomagnetic
substorms or solar flares. Petschek (1964) proposed a model with an increased rate
of reconnection resulting from the use of a current-sheet length greatly reduced
from that of the Sweet—Parker model. He did this by encasing their current sheet,
in an exterior field with global scale length L.. He also introduced two pairs of
standing slow-mode shocks radiating outwards from the tip of the current sheet,
as shown in Fig. 5.3. In Petschek’s solution most of the energy conversion comes
from these shocks, which accelerate and heat the plasma to form two hot outflow
jets.

Petschek also assumed that the magnetic field in the inflow region was current-
free and that there were no sources of field at large distances. These assump-
tions, together with the trapezoidal shape of the inflow region created by the slow
shocks, lead to a logarithmic decrease in the magnetic field as the inﬂowing plasma
approaches the Sweet—Parker current sheet. This variation in the field leads in turn
to Petschek’s formula for the maximum reconnection rate, namely

MAe[Max] = 7{/(8 In Lu) (5~19)

where L, is again the Lundquist number and Mae is the Alfvén Mach number in
the region far upstream of the current sheet, as shown in Fig. 5.3. Because of its
logarithmic dependence on Ly, the Petschek reconnection rate is many orders of
magnitude greater than the Sweet-Parker rate, and for most space and laboratory
applications Petschek’s formula predicts that Mae ~ 10~ to 1072,
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Fig. 5.4. Syrovatskii’s field configuration. Unlike Petschek’s configuration, this
has external sources which produce an X-type configuration even when local
sources of current are absent. The application of external driving to an X-type
configuration (lefi-hand panel) creates a current sheet (right-hand panel) whose
length L depends on the temporal history of the driving and the rate at which
reconnection operates. The fastest reconnection rate occurs when L is equal to the
external scale length L.

Petschek’s model uses the Sweet-Parker model to describe the flow of plasma
and fields in the diffusion region. Because the Sweet—Parker model only gives
average properties for this region, such as its length and thickness, no detailed
matching is possible between the flows in the diffusion region and the flows in the
external region outside. This lack of detailed matching is sometimes misunderstood
to mean that there is no matching at all (Biskamp, 2000), but in fact the average
properties of the diffusion region are rigorously matched to the external region to
the extent that the Sweet—Parker model allows (Vasyliainas, 1975b).

It is not always appreciated that Petschek’s reconnection model is a particular
solution of the MHD equations which applies only when special conditions are
met. First, it requires that the flows into the reconnection region arise spontaneously
without external forcing (Forbes, 2001). In general, driving the plasma externally
creates a significant current density in the inflow region, and this violates Petschek’s
assumption that the inflow field is approximately potential. Second, Petschek’s
solution also requires that there be no external source of field in the inflow region.
In other words, the field in question must be just the field produced by the currents
in the diffusion region and the slow shocks. In many applications of interest neither
of these conditions is met.

An alternative approach to reconnection in current sheets was pioneered by
Green (1965) and Syrovatskii (1971), who considered what happens when a weak
flow impinges on an X-line in a strongly magnetized plasma, as indicated in Fig. 5.4.
The imposed flow creates a current sheet which achieves a steady state when the
rate of field line diffusion through the sheet matches the speed of the flow. A
quantitative model of this process was published by Somov (1992).
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For a steady-state MHD model the spatial variation of the field in the inflow
region is the key quantity which determines how the reconnection rate scales with
the Lundquist number L,. For any such model, the electric field is uniform and
perpendicular to the plane of the field. Thus outside the diffusion region we have
E, = —v,By, where E, is a constant, v, is the inflow along the axis of Symmetry
(the y-axis in Fig. 5.4), and B is the corresponding field. Thus the inflow Alfvén
Mach number, M., at large distances can be expressed as

Mae = Ma;B?/B? (5.20)

where My, is the Alfvén Mach number at the current sheet, B; is the magnetic field
at the edge of the current sheet, and B is the magnetic field at a large distance.
In Syrovatskii’s model the field along the inflow axis of symmetry is

B, = B(1 + y*/LH'/? (5.21)

where B; is the field at the current sheet, y is the coordinate along the inflow axis,
and L is the length of the current sheet. Combining (5.21) with (5.20) yields
1
Mpe = MpAi———— » 5.22
which has its maximum value when L = L. Thus the maximum reconnection rate
in Syrovatskii’s model scales as L, /2, the same as for the Sweet—Parker model.
By comparison, the field in Petschek’s model along the inflow axis varies approx-
imately as
. 5 _ p L= @/mMac InLe/y)
TN = (4/m)MacIn(Le/ 1)
where [ is the current sheet thickness. (This expression for the field is only a rough
estimate; the actual variation in the region y < L (Vasylilinas, 1975b; Priest and
Forbes, 2000) is more complex.) Evaluating B, at y = L. and substituting the
result into Eq. (5.20) gives

Mai = Mae[l — (4/7)MacIn(Le/ D] 2. (5.24)

(5.23)

The Sweet—Parker theory can be used to eliminate L. /[, so as to obtain an expres-
sion for M. as a function of L,. This expression has a maximum value, given by
Eq. (5.19).

The spatial variation in the field in the inflow region is given for the Syrovatskii
and the Petschek models in Fig. 5.5. Although both fields increase with distance
away from the current sheet, the rate at which they increase is markedly different.
At large distances the rate of increase in the Syrovatskii model is dominated by the
external field, whose variation is fixed and independent of the reconnection rate. By
contrast, the variation in the Petschek model is closely coupled to the reconnection
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Fig. 5.5. The variation in the magnetic field, in the inflow region of Petschek’s and
Syrovatskii’s models, along the axis of symmetry (the y-axis). At large distances
the variation in Syrovatskii’s model is determined by external field sources at
infinity. The magnetic fields are normalized to their values at the edge of the
current sheet, and the distance y is normalized to the length L of the current sheet.
For the Petschek curve, Ma, =0.02,] =0.1L,and L., = 2L.

rate, disappearing altogether when the rate goes to zero. This is one of the main rea-
sons why the two models give such different predictions for the reconnection rate.
It also explains why the numerical simulation by Biskamp (1986) of the evolution
shown in Fig. 5.4 produces a Sweet—Parker rather than a Petschek-type scaling.
Even in circumstances where Petschek’s model would be expected to apply
it apparently does not. Several numerical simulations (Biskamp, 1986; Scholer,
1989) were carried out in an attempt to verify the steady-state solution found by
Petschek (1964), but none of these simulations has been able to replicate the scaling
results that are predicted by Petschek’s solution if the resistivity is kept uniform
and constant. Only when a non-uniform, localized, resistivity model (Ugai, 1988;
Yan et al., 1992) is used does the Petschek configuration appear. The fact that the
resistivity apparently needs to be non-uniform does not contradict Petschek’s model
because the model makes no explicit assumption about whether the resistivity is
uniform or not. It is equally valid for both cases because it assumes only that
the region where resistivity is important is localized. The numerical experiments
carried out to date imply that the diffusion region can be localized only by enhancing
the resistivity near the X-line. Whether there might be other ways to localize the
diffusion region (e.g. assuming a non-uniform viscosity) remains unknown.
Although Petschek assumed that the current density j in the inflow region was
zero to first order, it is not actually necessary to make such an assumption to obtain
a solution. More generally, j can be non-zero to first order in the expansion of
the inflow equations, so that the inflow magnetic field is no longer determined by
solving Laplace’s equation (V2A = 0) for the vector potential A but by solving
Poisson’s equation (V2A = —poj) instead (Priest and Forbes, 1986). The relax-
ation of the assumption that j is zero introduces an additional degree of freedom,
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Fig. 5.6. External Alfvén Mach number M. vs. the internal Alfvén Mach number
M,;, for the family of solutions obtained by Priest and Forbes (1986). These
solutions were obtained by an expansion in terms of the inflow Alfvén Mach
number for small variations of the field around the uniform inflow field assumed
in the Sweet—Parker model. Solutions with the labeled characteristics are obtained
for different choices of the parameters describing the distant boundary conditions.

so that there is now a family of solutions (Fig. 5.6). These solutions can be sum-
marized in terms of the relation between Mp;, the internal Alfvén Mach number
at the entrance to the diffusion region, and M., the Alfvén Mach number at the
exterior inflow boundary (Fig. 5.3). The relation is
12
%‘i"'—l/— =1- %MAe (1—b) [0.834 — Intan (%L(‘M;;”M;f/z)]
(5.25)
where b is a parameter whose value corresponds to the assumptions made about
the inflow boundary conditions at y = L.. The relation (5.25) is plotted in Fig. 5.6
for S = 100 for various values of b. When b = 0 Petschek’s solution is obtained,
and when b = 1 a solution equivalent to that of Sonnerup (1970) is obtained.
When b < 1, the solution somewhat resembles Syrovatskii’s solution in that the
magnetic field increases markedly with distance away from the current sheet. For
these solutions the maximum reconnection rate is the same as for the Sweet—-Parker
model.

As b increases beyond unity, a flux-pile-up regime occurs where the magnetic
field increases as the diffusion region current sheet is approached (Fig. 5.7). For
a very strong flux pile-up with b >> 1, the flow approaches the MHD stagnation-
point-flow solution found by Parker (1973) and Sonnerup and Priest (1975). The
stagnation-point flow appears to be very fast since formally there is no limit to
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Fig. 57 (a) The §tggngti0n-point~ﬂow solution obtained by Parker (1973) for
magnetic field annihilation at a current sheet, and (b) the closely related flux-pile-
up solution obtained by Priest and Forbes (1986).

the value of Mj.. However, large values of M,. require large variations in the
gas pressure, which are not possible unless the plasma B is very much greater
than unity. For low-$ plasmas the amount of pile-up is limited, and when this
limitation is taken into consideration the reconnection rate is found to scale at the
relatively slow Sweet—Parker rate (Litvinenko et al., 1996; Priest, 1996; Litvinenko
and Craig, 1999). For a low-8 plasma the fastest rate occurs for & = 0, which is
Petschek’s solution.

Vasylitinas (1975b) was the first to point out that the differences between recon-
nection solutions are often related to the behavior of the gas and magnetic pressures
in the inflow region. The inflow can be characterized as undergoing a compressﬁon
or an expansion depending on whether the gas pressure increases or decreases as
the plasma flows in towards the X-point. These compressions or expansions can
be characterized further as being of the fast-mode type or the slow-mode type,
depending on whether the magnetic pressure changes in the same sense as the
gas pressure (fast-mode type) or in the opposite sense (slow-mode type). For the
family of solutions above one finds that in Petschek’s solution (b = 0) the gas
pressure is uniform to second order in the expansion parameter Mu, so that, to
this order, the plasma is neither compressed nor rarefied as it flows towards the
X-point. For solutions with b < 0 the plasma undergoes a slow-mode compression,
while for b > 1 it undergoes a slow-mode expansion. Between b = 0 and b = 1
the solutions have a hybrid character; slow-mode and fast-mode expansions exist in
different regions of the inflow. It is also possible to have hybrid solutions in which
slow-mode expansions and slow-mode compressions co-exist in different regions
of the inflow (Strachan and Priest, 1994), although this does not happen for the
above family of solutions.

5.3.2 Two-dimensional time-dependent reconnection

So f&.lI', we have only considered the development of steady-state models of recon-
nection. However, for many phenomena (such as flares and geomagnetic substorms)
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Fig. 5.8. Typical magnetic island structure resulting from the tearing instability
of a plane current sheet. The contour lines show magnetic flux surfaces of the

magnetic field (Forbes, 2006).

reconnection occurs on such short time scales that a steady or quasi-steédy state
does not exist. For example, in high-speed coronal mass ejections (with velocities
greater than about 1000 km/s) the current sheet created by the ejection grows in
length at a speed which is of the order of, or in excess of, the ambient Alfvén wave
speed (Lin and Forbes, 2000). Steady-state reconnection is primarily confined to
situations where the external field and the flows vary slowly compared with the
characteristic Alfvén time scale of the system.

Time-dependent reconnection was first considered by Dungey (1958), who noted
that motions in the vicinity of an X-line in a strongly magnetized plasma can
lead to the very rapid formation of a current sheet. The first explicit solution
demonstrating this possibility was published by Imshennik and Syrovatskii (1967).
They found that if the gas pressure is negligible and the resistivity is small then,
during the initial formation of the sheet, the electric field E at the X-line grows at
a rate proportional to (& — £)*? where . is about twice the Alfvén time scale of
the system. At the time f. the electric field becomes infinite, but the assumptions
underlying the solution break down before this time is reached. Although there have
been several analyses and extensions of this solution (Priest and Forbes, 2000), little
effort has been made to apply this theory to highly dynamic phenomena such as
flares.

Most theoretical effort on time-dependent reconnection has concentrated on the
tearing instability (Furth et al., 1963), illustrated in Fig. 5.8. This is a non-ideal
instability in which the magnetic reconnection of field lines plays a central role.
Tearing has been invoked in some flare models as a mechanism for releasing mag-
netic energy (Heyvaerts et al., 1977) but, considered as a possible flare mechanism,
it suffers from the fact that resistive tearing is relatively slow (Steinolfson and Van
Hoven, 1984). The onset of most flares occurs over a time period on the order of
the Alfvén time scale in the corona, but the time scale of the tearing mode is much
slower, being a combination of the Alfvén time scale and the much slower resistive
time scale. The actual growth rate depends on the wavelength of the perturbation.
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For a simple current sheet the growth rate is zero if the wave number  is such
that kI > 1, where [ is the width of the sheet. This means that a current sheet
which is shorter than 27 times its width is stable to tearing. For Lf,/4kl < 1, small
perturbations grow exponentially on a time scale of

T = (KDL (5.26)

where Ty, is the growth period of the tearing mode and L, is the Lundquist
number based on the current sheet thickness and the external Alfvén speed. The
fastest growing mode occurs when kI ~ L, Y4 and the corresponding growth
rate time scale is Ll],/z. For values of k[ less than Lu’]/4, this expressioncis not
valid.

The threshold condition k&l < 1 for tearing is a consequence of the fact that
the field lines of the initial current sheet resist being bent. An initial perturbation
which has a relatively short wavelength tends to straighten out before significant
reconnection can occur but, as the wavelength of the perturbation increases, there
is more time for diffusion to act. This diffusion occurs in a thin layer in the center
of the sheet having a thickness of order L, 23] for the shortest wavelength mode
and Ly '/*1 for the fastest growing mode.

The growth and stability of the tearing mode can be affected by many+fac-
tors, such as the geometry of the sheet, line-tying, the presence of a guide
field (a magnetic field component in the direction of the current), externally
driven flows, the mechanisms of magnetic diffusivity, and so on. A discussion
of such effects can be found in Galeev (1979), Priest and Forbes (2000), and
Wesson (1987).

Although a large body of literature is devoted to 2D reconnection, there are still
some fundamental questions that remain unanswered. For example, what is the rate
of reconnection in a rapidly driven system where the current sheet grows at a rate
of the order of the ambient Alfvén speed? This situation occurs in large coronal
mass ejections whose speed typically exceeds the local Alfvén wave speed. Also,
the effects of strong radiation, thermal conduction, and partial ionization have been
only partially explored.

o

5.4 Reconnection in three dimensions

The addition of a third dimension introduces new reconnection properties and
behaviors that are fundamentally different from those in two dimensions. Perhaps
the most significant of these is that reconnection can occur in configurations where
all field lines have the same topology. That is, the mappings of all field lines of the
system are topologically identical. In such configuration the concept of a moving
field line becomes ambiguous (Priest et al., 2003).

__———
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tube slipping
in virtual flow

Fig. 5.9. Schematic diagram of the ambiguity that occurs in the definition of field
line velocity in three dimensions. The wide broken lines indicate the projection of
magnetic flux tubes onto the two-dimensional plane (from Priest et al., 2003).

Figure 5.9 illustrates the situation. Here it is supposed that an ideal conductor,
having zero electrical resistivity, surrounds a non-ideal region where reconnection
occurs. We suppose for simplicity that there is no fluid flow in the ideal region.
Because of the reconnection occurring within the non-ideal region, the mapping
of the field lines from their entry point to their exit point changes with time. In
three dimensions the change in the connectivity of the field lines can occur in a
distributed way, so that any given field line is continually slipping, changing its
point of connection to the boundary. Consequently, if one makes a movie of the
field line motion by tracing out the field lines at their incoming boundary point,
these field lines will appear to move not only within the non-ideal region, but also
within the ideal region lying beyond the other side of the non-ideal region. This
“yirtual” motion in the ideal region occurs even though the fluid in the exterior
region is at rest. Thus the virtual motion contradicts the normal requirement that
the field lines in a stationary ideal conductor should be at rest. This duality in the
definition of the field line velocity is also evident if one simply considers using
the exit point of the field line, rather than its entrance point, to trace out the field
lines. In this case the field lines on the outgoing side will appear to be at rest while
the field lines on the incoming side will appear to move (Priest et al., 2003). Such

behavior cannot occur in two dimensions.

5.4.1 Definitions revisited

In two dimensions, linear null points fall into two types, namely X-points and
O-points, where the neighboring magnetic field lines have X-type or O-type topol-
ogy, respectively (see the previous chapter). The notion of magnetic reconnection
is then fairly straightforward. Reconnection occurs at an X-point, where two pairs
of separatrices meet; during the process of reconnection pairs of magnetic field
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lines are advected towards the X-point, where they are disconnected and then
reconne?cted. The mapping of magnetic field lines from one boundary to another is
discontinuous and, therefore, during the process of reconnection there is a sudden
change in the magnetic connectivity of plasma elements owing to the presence of
a localized diffusion region where ideal MHD breaks down.

These features of two-dimensional reconnection carry over into three dimen-
sions, provided that there is a well-defined topology. Such a topology will exist
if there are appropriate null-point pairs or localized point sources on the bound-
ary (see Chapter 4). However, in many cases of interest an exact topology does
not exist. This is especially the case in the solar corona, where reconnection is
thought often to occur when null points are not present (Démoulin et al., 1997). To
cope with such situations, Schindler et al. (1988) proposed that the deﬁnitior'l of
reconnection should be extended to include all effects of local non-idealness that
generate a component (E)) of the electric field along a magnetic field. In other
words if a localized region exists where

/En ds #0 (5.27)

then reconnection is occurring. Some authors (see Priest and Forbes, 2000) have
argued that such a definition is too general, since it includes examples of magnetic
diffusion or slippage (such as in double layers or shock waves) that have not been
traditionally included in the concept of reconnection.

If nevertheless, we accept the idea that reconnection occurs whenever there is an
electric field parallel to the magnetic field then the question arises of how the rate of
reCO{lnef:tion is to be defined. In the two-dimensional example of Section 5.3.1, the
rate is given by the electric field at the X-line. In the absence of an exact topology
and in the presence of a distributed parallel electric field, it is no longer obvious
hf)W one should define the rate. However, for the three-dimensional example of
Fig. 5.10, such a rate must exist since there is a definite value of flux that is
changing its connectivity as a function of time. Hesse et al. (2005) showed that the
reconnection rate, i.e. the rate at which magnetic flux is newly connected, is given
by the maximum value of the electric potential obtained by integrating the parallel
electric field along the magnetic field line.

5.4.2 Reconnection in fields without distinct topological mappings

In this section we provide a kinematic example of how the generalized definition
of reconnection can be applied to a three-dimensional configuration that has no
exact topology. (The term “kinematic” refers to the fact that the model does not
Incorporate the continuity, momentum, and energy equations as would an MHD

—#
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e=9 e=10

Fig. 5.10. Evolution of the magnetic field in the Hesse ef al. (2005) model for
line-tied reconnection in the corona.

model.) The magnetic field model for this example is (from Hesse ef al., 2005)
1 —(y/L,)? 1
(y/Ly) (5.28)

B, =-1—¢ ,
* 14+ (y/Ly)? 1+ (z/L)?
1
By = %, (5.29)
1
B:= s (5.30)

Here L, and L, are arbitrary scale lengths, which are both set to 5 in the model.
This magnetic field does not vanish anywhere, and therefore it does not have the
separatrix surfaces or separator line that would exist if null points were present.
The effects of reconnection on the magnetic field are simulated by varying the
e amount of flux that has been reconnected at a
given time. Figure 5.10 displays an overview of the magnetic field structure for
different values of €. The starting value was € = 0, which corresponds to a sheared
magnetic arcade. Increasing € leads to the formation of a flux rope that lies above
the initial arcade.

From Faraday’s equation (Eq. 10.9) we can calculate the inductive electric
field associated with the changing magnetic field of the model. By integrating the
component of this field parallel to the magnetic field, we obtain the electric potential
shown in Fig. 5.11. This potential is not necessarily the total potential; it represents

parameter € which determines th

5.4 Reconnection in three dimensions 135

% 10°
1.5718;

1.2574
0.9431
0.6288

0.3145

0.0002
S0 0 5 10
X

Fig. 5.11. Mapping onto the z = 0 surface of th i '
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only the potential caused by the motion of the magnetic field. For this reason it is
sgmetlmes referred to as a pseudo-potential (see Hesse et al., 2005). The resultin
d.1stribution of the potential on the surface is reminiscent of the c;hromos herii
ribbons produced by solar flares in decaying active regions where the geomeir of
the magnetic field is similar to that used in the model. At any given time the )rlate
of reconnection is given by the peak value of the inductive potential.

5.4.3 Numerical simulations of three-dimensional reconnection

A la.rge number of fully three-dimensional (3D) MHD simulations have been carried
out in which reconnection occurs. However, in many of these simulations the focus
has been not on the reconnection process itself but on some other phenomenon or
structure in which reconnection plays an important, but perhaps secondary, role

In the last few years there has been an increasing interest in determining thz:l,exac;
naturet of the reconnection process occurring in these simulations and in carrying out
n(?w simulations specifically designed to determine the nature of 3D reconnec%ion

Flgl?re 5.12 shows the magnetic configuration that occurs in a global simulation 01;
the interaction between the solar wind and the terrestrial magnetic field (Dorelli
etal., 2007) for a southward orientation of the interplanetary magnetic field. For a
northward ma‘gnetic field, the magnetic topology is relatively simple, consist'ing of
a two magnetic nulls with a single separator line between them. However, for the
southward case shown in the figure, a more complex situation occurs Wit’h many

nulls (indicated )
nulls,( ated by the small spheres) and many separator lines connecting these

__———
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Fig. 5.12. Global MHD modeling of Earth’s magnetosphere. This figure shows a
view from the Sun of the dayside magnetopause from a global MHD simulation
of the terrestrial magnetosphere. In this figure the interplanetary magnetic field
is oriented southward, and there is a long flux rope at the sub-solar region of the
magnetopause. The small spheres show the location of the multiple neutral points

that form. (Courtesy of J. Dorelli.)

Fig. 5.13. Magnetohydrodynamic simulations of separator reconnection. (Left) A
view from the Sun of the Earth’s dayside magnetopause for a purely northward
IME, with the Earth’s dipole tilted in the GSE yz-plane by 45° (compare with the
bottom panel in Fig. 4.3 showing a potential field model in the case where the
Earth’s dipole field is aligned with the z-axis). A separator line (see Fig. 4.2 for
the detailed geometry of such a null-null line) extends across the magnetopause
and terminates in the polar cusp neutral points that are indicated by the spheres
(from Dorelli et al., 2007). (Right) A simulated solar coronal magnetic skeleton.
Two separatrix surfaces intersect to form three separator lines (from Maclean

et al., 2006; Hayes et al., 2007).

Idealized simulations are sometimes carried out in order to understand better the
at occur in more realistic global simulations. Figure 5.18

complex interactions th
type reconnection (Priest and

shows two examples of what is known as separator-
Forbes, 2000). This type of reconnection is common to both the terrestrial magne-
tosphere (left-hand panel) and the solar corona (right-hand panel). The example in
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the left-hand panel is an idealized version of the reconnection process in the Earth’
magnetosphere (Dorelli et al., 2007), while the example in the right-hand pan i
is an idealized version of the reconnection process in compact (i.e. non-eru ptivg)
solar flares (Maclean et al., 2006). The topologies of the magnetic fields shorv)vn in
poth cases are complicated and inherently three dimensional, but many aspects of
this 3D complexity are common to both situations.

Three-dimensional numerical simulations have also been carried out to test var-
ious 3D analytical models. An example of this type of simulation is the one carried
out by Heerikhuisen and Craig (2004) to test a 3D analytical solution obtained
by Craig et al. (1995). This was is an exact analytical solution of the incompress-
ible resistive MHD equations, and it is closely related to the stagnation-point-flow
(Sonnerup and Priest, 1975) and flux-pile-up solutions (Priest and Forbes, 2000)
mentioned earlier in this chapter. There has been considerable discussion (;ver the
last 30 years about the physical significance of these types of solution. Because the
mgthematical expression for the reconnection rate in these solutions is indepen-
dent of the electrical conductivity of the plasma, some authors (e.g. Sonnerup and
Priest, 1975) have argued that they correspond to fast reconnection. Other authors
(Litvinenko et al., 1996), however, argued that these solutions correspond to very
s?ow re?onnection because of the assumption of incompressibility. The numerical
51ml?lat10ns have shown that the latter conclusion is correct. Nevertheless, recon-
nection of this type has been observed to occur in global MHD simulation,s of the
magnetosphere when the interplanetary magnetic field is northward (see Dorelli
etal., 2007).

Finally, several 3D numerical simulations have been carried out in conjunction
with laboratory experiments specifically designed to study the kinetic aspect of the
E;c(:)(())rjlr)lection process. A recent review of these experiments was given by Yamada

5.5 Topics for future research

Malny aspects of magnetic reconnection have yet to be explored. Even long-studied
topics such as steady-state two-dimensional reconnection are not fully understood
Man)’ questions remain about how time-dependent reconnection works in impul:
Sively driven phenomena such as solar flares and geomagnetic substorms. For
example, during the impulsive phase of eruptive solar flares the current .sheet
Wwhere reconnection occurs can grows at a rate that exceeds the Alfvén time scale
of the S}./Stem. This rapid growth means that no steady-state reconnection the-
ory :?lpphes during the impulsive phase, and there are virtually no theories that
p.red1ct how the reconnection rate scales with the plasma resistivity in such a
Sttuation,

——
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Despite growing evidence that the reconnection process 'in both solar flares
and the terrestrial magnetosphere may be turbulent (McKenzie, 2000; Nakam}lra
et al., 2002), only a few studies have addressed the issue of turbulent reconn?ctlon
(e.g. Ichimaru, 1975; Lazarian and Vishniac, 1999). The occurrence of plasma
turbulence in a highly structure environment poses a severe challenge to .large-
scale numerical simulations, so progress in this area may be slow for some time to
Cor:z. we emphasized in the early part of this chapter, it seems likely that k'inetic
effects play an important role in determining how reconnection worl.<s both m the
terrestrial magnetosphere and in the solar corona. The low rate of particle colh‘smns
in the magnetosphere and the super-Dreicer electric ﬁe‘lds that 2.11”6 generated in the
corona rule out any models that use transport coefficients derived from standard
collisional theory. The fact that collisional effects are.impc?rtar'lt does nc.)t, in general,
rule out the application of MHD theory and simulations in eltﬁer environment. As
Parker (1996) pointed out, ideal MHD theory does not require the plasma to be
collisional; it only requires that the electric field in the re§t f'rame‘ of‘ the. plasrrﬁna be
small compared with the convective electric field. The principal llITlltaFl(?n of ideal
MHD theory, insofar as reconnection is concerned, is that rr:?connectlon is inherently
non-ideal. Thus, some sort of non-ideal treatment is required of the curren‘t sheet
region where reconnection occurs. In the magnet‘osphere a,nd the coFona th'lS rllon-
idealness requires a consideration of the generalized Ohm’s ?aw (?r 1‘ts equivalent.
The only region where collisional theory is likely to t')e valid .V\{lthln the.current
sheet is the solar convection zone, where particle—pamcle'colllsmns dominate. It
seems likely that as numerical simulations of the copvectlon Zc.me l?econ?e mo_rlei
sophisticated and realistic, interest in how reconnection works in this region Wi

increase.

6
Structures of the magnetic field

MARK B. MOLDWIN, GEORGE L. SISCOE, AND
CAROLUS J. SCHRIJVER

6.1 Preamble

One goal this book pursues is to identify phenomena throughout the heliosphere
that can be said to be universal. An excellent example of a universal subject is the
morphology of magnetically defined structures. The heliosphere is full of distinctive
magnetic forms that recur in widely different places. What they are and why this
is so are questions we take up here. As a first stab at distinguishing magnetically
defined structures, we put them into three groups: current sheets, of which the
heliospheric current sheet (HCS) is the largest example; flux tubes, with sunspots
as a prototype; and cells, in which we include cavities such as magnetospheres.
These three classes make up the common forms of heliophysical magnetic structure
that exist on MHD time and distance scales (we are not concerned here with kinetic-
scale structures that inhabit the dissipation range of turbulence). Our tasks are to
explain why these magnetic structures arise naturally and to describe examples of
each. It is important to note that these structures are idealized mental constructs to
approximate a real world; we are trying to describe a continuum in black-and-white
terms. We should realize that current sheets are not mathematical planes, flux tubes
are surrounded by other fields, and cells are leaky in the real world. Nevertheless,
these abstractions should help us to think and communicate.

That magnetically defined structures in the heliosphere have been seen to take
common forms has led people to recognize over time that there actually exists such
a thing as the magnetic organization of cosmic matter (as described, for example,
in the NRC report “Plasma physics of the local cosmos”, 2001, after which this
volume is named). The concept of magnetically organized matter helps to define
heliophysics as a unique field of study (cf. Section 1.2) of interesting plasma phe-
nomena in the universe. Parker’s monumental Cosmical Magnetic Fields (1979)
paints a picture of space constantly animated by magnetic field born deep in the con-
vection layer of the Sun, pursuing necessarily a life of turbulent, sometimes violent
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